Research on Landslide Prediction Model Based on Support Vector Model
نویسندگان
چکیده
The Landslide,which is caused by mining activities, has become an important factor which constrains the sustainable development of mining area. Thus it becomes very important to predict the landslide in order to reduce and even to avoid the loss in hazards. The paper is to address the landslide prediction problem in the environment of GIS by establishing the landslide prediction model based on SVM (support vector machine). Through differentiating the stability, it achieves the prediction of the landslide hazard. In the process of modelling, the impact factors of the landslide are analyzed with the spatial analysis function of GIS. Since the model parameters are determined by cross validation and grid search, and the sample data are trained by LIBSVM, traditional support vector machine will be optimized, and its stability and accuracy will be greatly increased. This gives a strong support to the avoidance and reduction of the hazard in mining area. * Corresponding author. E-mail address: [email protected];
منابع مشابه
Landslide Displacement Prediction of WA-SVM Coupling Model Based on Chaotic Sequence
Confronted with the chaotic characteristics of landslide displacement and the deficiencies of traditional time series prediction model, the wavelet analysis -support vector machine model (WA-SVM) based on chaotic time series for landslide displacement prediction is proposed. On the basis of the analysis of chaotic characteristics, landslide displacement is decomposed in to components with diffe...
متن کاملEnsemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search
In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...
متن کاملA Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping: A Case Study at Wanzhou in the Three Gorges Area, China
In this study, a novel coupling model for landslide susceptibility mapping is presented. In practice, environmental factors may have different impacts at a local scale in study areas. To provide better predictions, a geographically weighted regression (GWR) technique is firstly used in our method to segment study areas into a series of prediction regions with appropriate sizes. Meanwhile, a sup...
متن کاملSelecting statistical or machine learning techniques for regional landslide susceptibility modelling by evaluating spatial prediction
With so many techniques now available for landslide susceptibility modelling, it can be challenging to decide on which technique to apply. Generally speaking, the criteria for model selection should be tied closely to end users’ purpose, which could be spatial prediction, spatial analysis or both. In our research, we focus on comparing the spatial predictive abilities of landslide susceptibilit...
متن کاملPrediction of daily evaporation using hybrid support vector regression-firefly optimization algorithm and multilayer perceptron
Prediction of daily evaporation is a valuable and determinant tool in sustainable agriculture and hydrological issues, especially in the design and management of water resources systems. Therefore, in this study, the ability of artificial intelligence models of multi-layer perceptron (MLP), support vector regression (SVR), and the hybrid model of support vector regression-firefly optimization a...
متن کامل